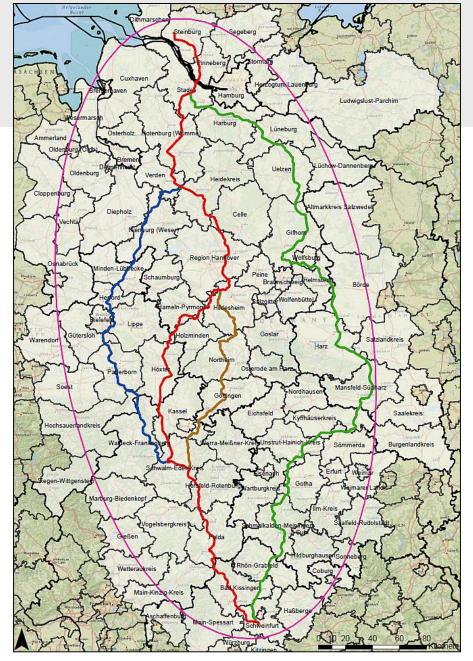
Planerische Analyse und Bewertung des SuedLink § 6 Antrags

Antragsüberarbeitung - welche methodischen Anforderungen sind zu beachten?

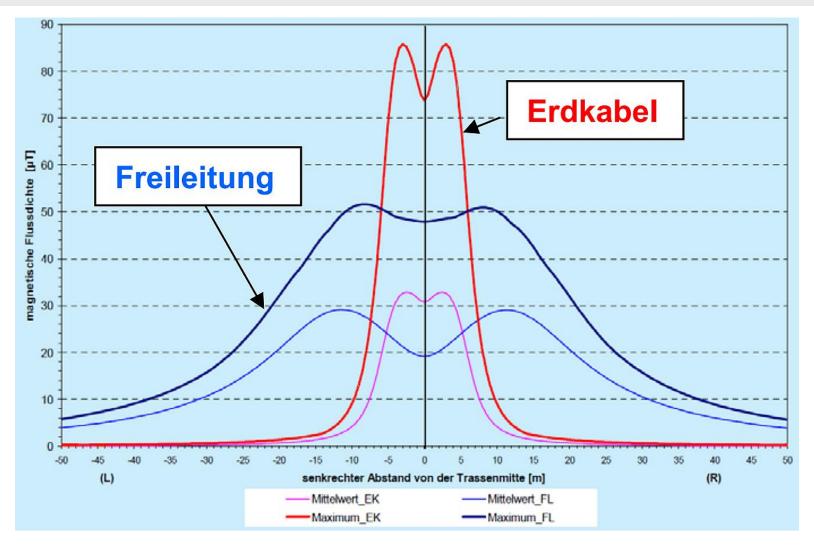
Erste Vorstellungen in Unkenntnis der in Kürze zu erwartenden gesetzlichen Neufestlegungen

apl. Prof. Dr. Ing. Karsten Runge OECOS GmbH



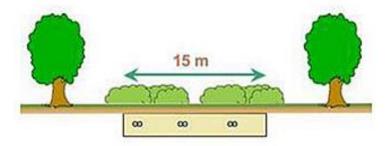
Aus "Eckpunkte für eine erfolgreiche Umsetzung der Energiewende" der Bundesregierung vom 01.07.2015

- Gemeinsame Stammstrecke der Vorhaben 3 und 4 über eine noch festzustellende Länge.
- Leitungen von Brunsbüttel nach Großgartach zumindest teilweise mit der Leitung von Wilster nach Grafenrheinfeld gebündelt.
- Vorlage verschiedener Trassenvarianten als Alternativen durch ÜNB, von denen zumindest eine Abzweigung nach Westen und im Ergebnis keine Stammstreckenführung nach Großgartach über Grafenrheinfeld beinhaltet.
- Vorrang von Erdverkabelung und wo dies nicht möglich oder sinnvoll ist, Nutzung vorhandener Trassen und Infrastrukturen.

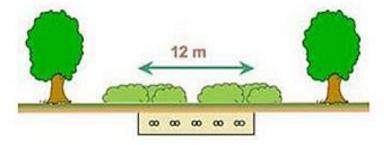

Planungsellipse und zugehörige Landkreise

Schematischer Vergleich der magnetischen Felder

(Absolutwerte durch zahlreiche Faktoren beeinflussbar)


Abstandsanforderungen durch Felder und Emissionen von HGÜ-Freileitungen und HGÜ-Kabeln

	Freileitung	Kabel
Magnetisches Feld	26. BlmschV-Anlage 1a: Grenzwert 500 µT *	
Elektrisches Feld	 Höhe der Feldstärke anders als bei Drehstrom im Bereich natürlicher Toleranzen Wirkungen wie Funkenentladungen auch zwischen Personen und leitfähigen Objekten, die zu erheblichen Belästigungen oder Schäden führen können, sind zu vermeiden* (26. BlmschV). 	nicht relevant, weil abgeschirmt
Korona- entladung	 Entstehung und Verdriftung ionisierter Luftpartikel mangels Neutralisierung intensiver als bei Drehstrom Umstrittene Wirkung in Verbindung mit Luftschadstoffen Entstehung von Ozon und Stickoxiden Geräuschentwicklung 	nicht relevant, weil abgeschirmt

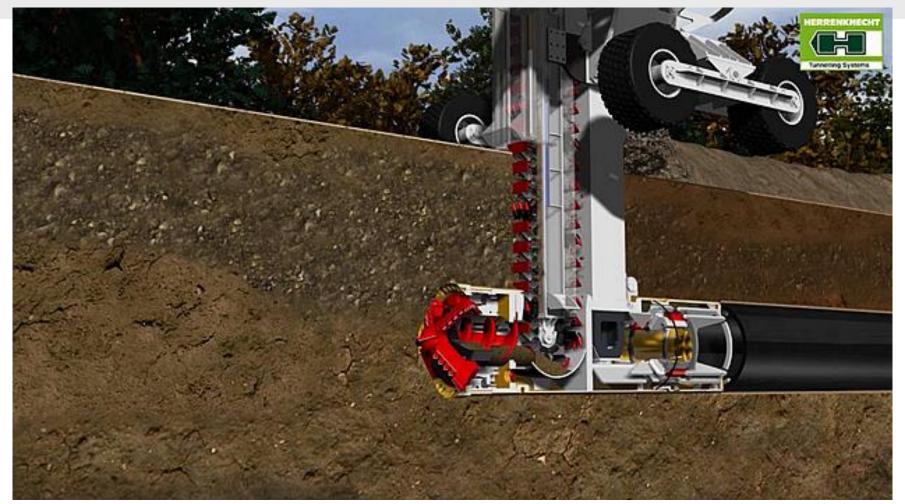

^{*} Gilt bei höchster betrieblicher Anlagenauslastung im Einwirkungsbereich an Orten, die zum dauerhaften oder vorübergehenden Aufenthalt von Menschen bestimmt sind.

Erdkabelverlegung – Einzelfallbeispiele für 5 GW Übertragungsleistung

MI mit LCC Technologie: 3 bipolare Systeme mit 500 kV HGÜ

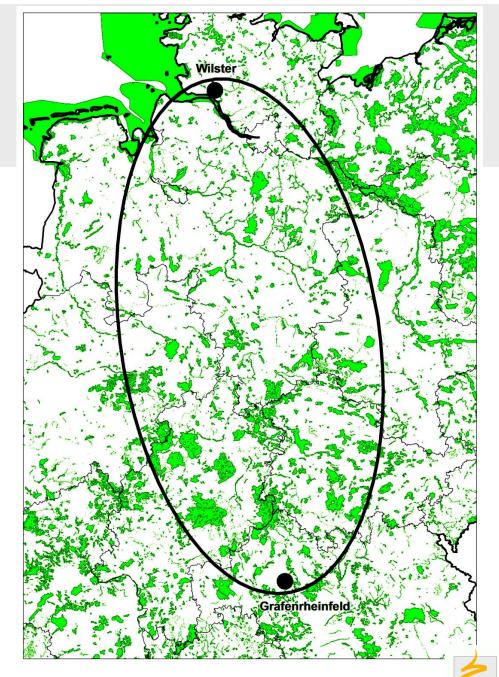
VPE Kabel mit VSC Technologie: 5 bipolare Systeme mit 320 kV HGÜ

Quelle: Wendt, Europacable 2015

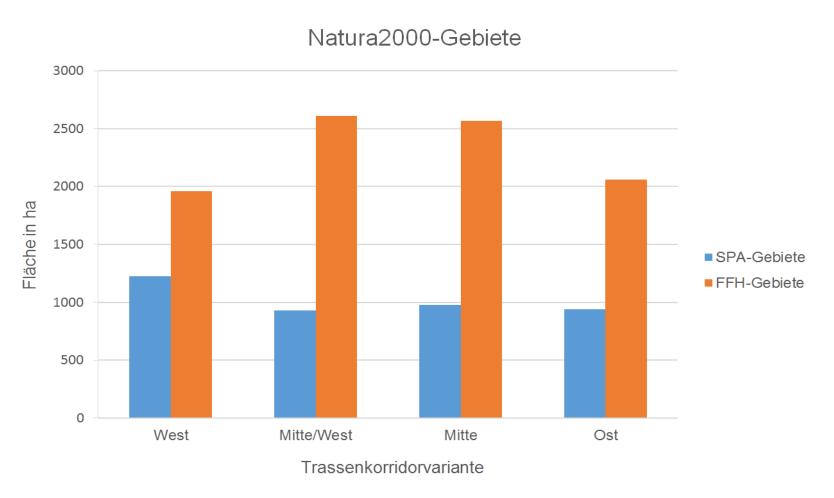

Erdkabelverlegung: Trassenbreite im Bau - Offenes Verfahren

Erdkabelverlegung: Trassenbreite im Bau - halboffenes Verfahren

Quelle: Peters, Fa. Herrenknecht 2015


Konfliktpotenzial bei Erdkabelverlegung Beipiel seltener Feuchtbiotoptypen

GEFÄHRDUNG STATUS		S- REGENERIER- BARKEIT	TEN- DENZ	§ 30 BNATSCHG
Waldfreie, oligo- bis mesotrophe Niedermoore und Sümpfe	1	K	negativ	х
Grünland nasser bis (wechsel-)feuchter Standorte (Pfeifengraswiesen; Brenndolden-Auenwiesen)	1	S	negativ	х
Salzgrünland des Binnenlandes	1	K	?	Х
Hochmoore (weitgehend intakt)	1	N	negativ	Х
Übergangsmoore und Zwischenmoore	1-2	N	negativ	х
Nährstoffarme Großseggenriede	2	S	negativ	X
Schneidenröhricht	1-2	S	negativ/	х
Schilfröhrichte (Schilf-Wasserröhricht)	2-3	S	?	Х


Quelle: BfN 2006. 1 - von vollständiger Vernichtung bedroht, 2 - stark gefährdet; K - kaum regenerierbar, S = schwer regenerierbar, N – Nicht regenerierbar

Cluster von Natura 2000-Gebieten (grün) in der Südhälfte der Planungsellipse

Querungsoptionen sowohl von Gebietszielen und Arteninventar, als auch von der Eingriffsintensität abhängig.

Die Beanspruchung von Natura 2000 Gebieten durch die im Erstantrag vorgestellten Korridore spiegelt die bisherige Priorität der Freileitungsplanung

Bodenerwärmung ist mit Leistungsverlusten verknüpft Minimierung im Interesse des ÜNB – diverse Stellgrößen möglich

Erwärmung durch Kabel abhängig von:

- der Leitungstechnologie (HGÜ geringere Erwärmung als HDÜ)
- der Legetiefe und der Wärmeleitfähigkeit des Erdreichs
- der Isolierung und der Bettung der Leitungen
- der Anordnung und dem Abstand der Leitungen
- dem Leitungsquerschnitt sowie der tatsächlichen Kabelauslastung

Deutsche HGÜ Kabel im Bestand

Name	Projektstatus	Leitungs- technologie	Länge Erdkabel / Seekabel (km)	Spannung (kV)	Max. Übertra- gungsleistung (MW)
Baltic Cable	Betrieb seit 1993	Gleichstrom	250	450	600
BorWin 1	Betrieb seit 2010	Gleichstrom	128	300 (±150)	400
BorWin 2	Betrieb seit 2013	Gleichstrom	125	300	800
DolWin 1	Betrieb seit 2014	Gleichstrom	90 / 75	640 (±320)	800
HelWin 1	Betrieb seit 2013	Gleichstrom	85	500 (±250)	576
SylWin 1	Betrieb seit 2014	Gleichstrom	160	640 (±320)	864
DolWin 2	Betrieb seit 2015	Gleichstrom	90 / 45	640 (±320)	916
HelWin 2	Betrieb seit 2015	Gleichstrom	85	640 (±320)	690
DolWin 3	Inbetriebnahme 2016/17	Gleichstrom	79 / 83	640 (±320)	900

Umsetzung des neuen Erdkabelvorrangs unter Berücksichtigung der Eingriffsminimierung nach dem NOVA-Prinzip (NOVA: Netz-Optimierung vor Verstärkung vor Ausbau)

Denkbare Prioritätenreihenfolge:

- 1. Zu- und Umbeseilung oder Ersatzneubau nur bei einer nach aktuellen Abstandsanforderungen errichteten Höchstspannungsfreileitung innerhalb des bestehenden Schutzstreifens und nur soweit dabei auch vorsorgeorientierte Abstandsanforderungen bezüglich der HGÜ-Leitung erfüllt werden können.
- 2. Neubau einer Erdkabeltrasse in Bündelung, wenn deren Vorteile örtlich belegbar sind andernfalls ungebündelt.
- 3. Zu- und Umbeseilung oder Ersatzneubau einer nach veralteten Abstandsanforderungen errichteten Höchstspannungsfreileitung oder einer Verteilnetzleitung.
- 4. Neubau einer Höchstspannungsfreileitungstrasse in Bündelung, wenn deren Vorteile örtlich belegbar sind andernfalls ungebündelt.

HGÜ-Freileitungen sind in Deutschland noch nicht errichtet

Pilotvorhaben bedürfen:

- eines wissenschaftlichen Monitorings, um Informationen über deren Umweltwirkungen zu sammeln und zu bewerten,
- der planerischen Vorsorge, wenn trotz bestehender Unwägbarkeiten bereits ein großflächiger Einsatz geplant wird.

Als Grundlage sind angemessene Angaben zur einzusetzenden Technologie und ihrer Auswirkungen (Felder, Raumladungswolken, Ozon, NO_{x} , Schall) erforderlich.

Die Ermittlung und Bewertung der Umweltbelange muss einer Strategischen Umweltprüfung entsprechen

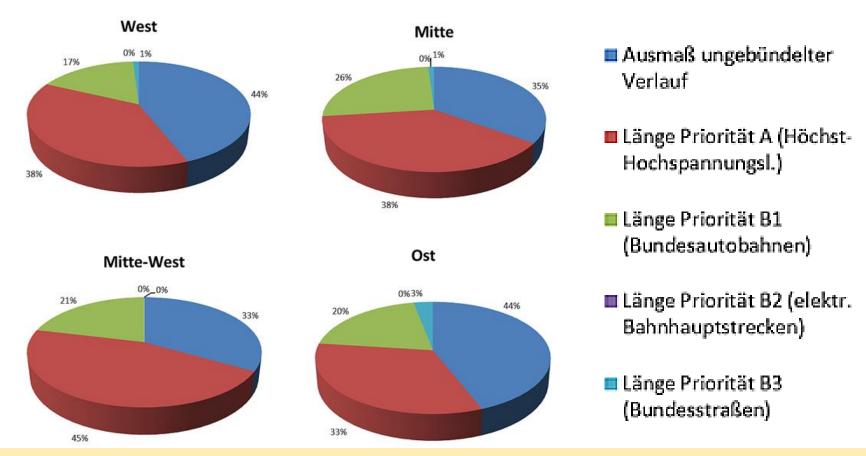
§ 5 (2) NABEG:

"Für die Bundesfachplanung ist ... eine Strategische Umweltprüfung durchzuführen."

Grundlegende Teilschritte der Bundesfachplanung eine gesonderte Ermittlung und Bewertung der Umweltbelange ist erforderlich

Ansprüche an die Konsistenz des Antrags

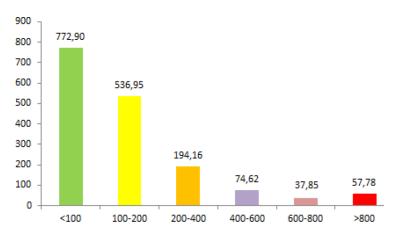
- Inhaltliche Konsistenz zwischen den einzelnen Antragsteilen (Einheitlichkeit von Text, Karten, Anhängen).
- Konsistenz der zugrunde gelegten Methodik; einheitliche Verwendung der Bewertungskriterien (Einheitliche Maßstäbe, nachvollziehbarer Aggregationsverlauf, in der Einzelanwendung Beurteilung nach vollständigem Kriteriensatz).
- Konsistenz in der räumlichen Betrachtung (Keine Beurteilung auf dem kleinsten gemeinsamen Nenner; bundeslandspezifische Unterschiede sind zu würdigen).
- Konsistente Bewertung im Verfahrensverlauf Einheitlichkeit der Beurteilung auch über die Planungs- und Beteiligungsphasen hinweg.



Ansprüche an den Umgang mit Querriegeln und Engstellen

- Einheitliche Definition, u.a. bezüglich Länge und Breite.
- Ampelprüfung mit vollem Kriterienkatalog erforderlich, keine pauschalen Abschläge.
- Ampelprüfungen sind zu begründen und zu dokumentieren.
- Kartendarstellungen der Qualität, räumlichen Lage und Ausdehnung der Raumwiderstände erforderlich.
- Aufgrund der besonderen Vulnerabilität muss der Anteil an Riegeln und Engstellen auf einer Längeneinheit ein vorrangiges Kriterium der Korridor(segment)auswahl sein.

Kein pauschaler Vorrang für Bündelung ohne Beleg ihrer örtlich konkreten Vorteile!



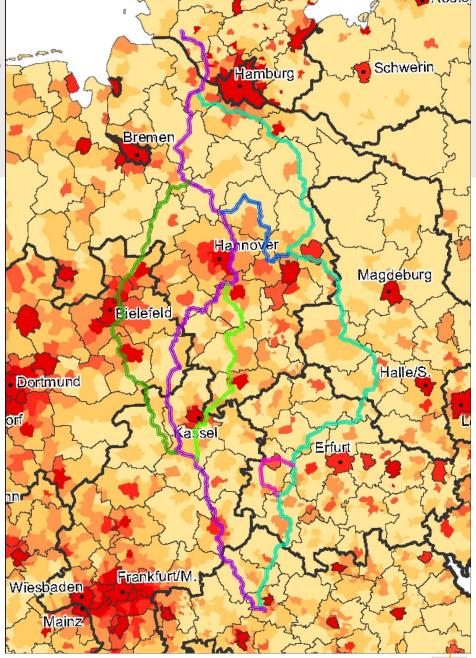
Erstantrag: Die hohen Bündelungsanteile gehen zu Lasten wichtiger räumlicher Belange.

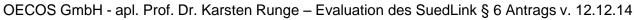
Erstantrag: Querung hoch verdichteter Räume durch HGÜ-Freileitungen

Aufsummierte Km-Längen aller vier Trassenkorridore pro Einwohnerdichtekategorie

Einwohner je km² Katasterfläche 2011

bis unter 100


100 bis unter 200


200 bis unter 400

400 bis unter 600

600 bis unter 800

800 und mehr



Erstantrag: Querriegel sehr hohen Raumwiderstands

Leicht erkennbare Querriegeldichte zwischen:

- Hamburg Lüneburg,
- Hannover Hildesheim,
- Minden Paderborn

Wenn der Anteil an Querriegeln und Engstellen ein vorrangiges Auswahlkriterium ist, dann minimiert sich auch die Beeinträchtigung hoch verdichteter Räume.

Vielen Dank für die Aufmerksamkeit!

apl. Prof. Dr. Ing. Karsten Runge

OECOS GmbH

Bellmannstr. 36 - D-22607 Hamburg

Tel.: +49 40 89070622 Fax: +49 40 85500812

Web: www.oecos.com – Email: info@oecos.com

